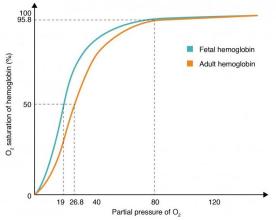

Shifting of O2-Hb dissociation curve to the right :(Laffinity)

1) $\uparrow CO_2$ concentration

At tissue level ,Hb starts releasing O2 (deoxy Hb) \rightarrow CO2 binds reversibly to the amino group of globin \rightarrow form Carbaminohemoglobin \rightarrow stabilize deoxy Hb $\rightarrow\downarrow$ Hb affinity to O2 \rightarrow shift the oxygen-hemoglobin dissociation curve to the right and \uparrow P50 (O2 release).

2) \uparrow H concentration (\downarrow PH):

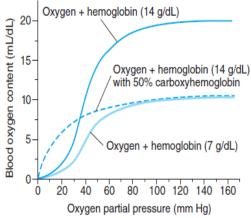
Bohr effect : is the decrease of Hb affinity to the O2 by the effect of increase acidity (\downarrow PH) : HbO2 + H \leftrightarrow HbH +O2 when the blood passes through the tissues \rightarrow ↑CO2 which react with H2O to form carbonic acid in presence of carbonic anhydrase enzyme \rightarrow ↑hydrogen ion concentration (H binds to several amino acid residue in deoxy Hb \rightarrow stablizes deoxy Hb \rightarrow ↓Hb affinity to O2 \rightarrow shift the O2-Hb dissociation curve to the right and ↑P50 (O2 release).


- 3) \uparrow temperature .ex : during exercise: \uparrow temp $\rightarrow \downarrow$ Hb affinity to O2 \rightarrow shift to the right \rightarrow O2 release .
- 4) ↑2,3 DPG (2,3- Diphosphoglycerate): HbO2 +2,3DPg↔Hb-2,3DPG +O2
 - It is an intermediate compound in the glycolytic pathway which is synthesized from 1,3 diphosphoglycerate . It is abundant in RBC.
 - It binds to β chain of deoxy Hb and stabilizes it→reduce O2 affinity
 - Factors affecting 2,3DPG :
 - i. high altitude (adaptation) : ^{2,3} DPG
 - ii. chronic hypoxemia caused by pathological lung disease and anemia $\rightarrow \uparrow 2,3$ DPG
 - iii. Exercise: \uparrow within 60 min .
 - iv. Hormones : growth hormone , thyroid hormone and and rogen $\rightarrow \uparrow 2,3$ DPG
 - v. Acidosis : $\downarrow pH \rightarrow \downarrow red$ blood cell glycolysis $\rightarrow \downarrow 2,3DPG$

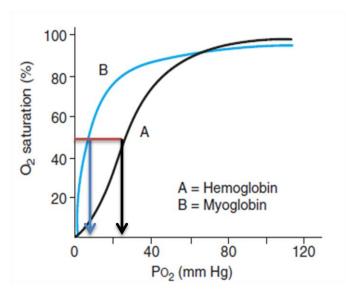
vi. blood store : 2,3 DPG \downarrow in stored blood in a week \rightarrow difficult O2 release to critically hypoxic patients after blood transfusion.

shifting of O2-Hb curve to the left :(*†*affinity):

O2 affinity of Hb \uparrow when \downarrow H, CO₂, 2,3-DPG level and temperature (decreases metabolic rate and the need for O2 is less). Another Two conditions \rightarrow Lt shift and \downarrow P50:


a) **Fetal hemoglobin** : HbF (contains **y globin** chain instead of β globin chain) the affinity of fetal hemoglobin(Hb F) for O2 is greater than that for adult Hb(Hb A) , The cause of this greater affinity is the poor binding of 2,3DPG by the y peptide chain that replace β chain in HbF \rightarrow shift the curve to the Lt . This greater affinity facilitates the movement of the of O2 from the mother to the fetus even at low PO2 .

b) Carbon monoxide :


- It is an extremely deadly gas .Co is a colorless, tasteless and odorless gas . CO competitively binds Hb with very high affinity(>240 times of O2) to produce carboxy hemoglobin.
- \circ CO \downarrow the Hb carrying capacity for O2 (\downarrow saturation of Hb)
- o dissolved O₂ does not affected by CO. it affects only O₂ binding sites of Hb →PaO2 normal →no stimulation of respiratory center which depends on PO2 level that stimulate the peripheral chemoreceptors

- Why patient with 50 % carboxy Hb is seriously affected than anemic patient with 50 % Hb (7gm/dl) ?
 - ➤ In CO poisoning the ODC curve shift to the Lt ,↑ oxygen affinity of Hb and ↓ the release of O2 to the tissue

myoglobin : is an iron-containing pigment found in skeletal muscle.

- It contains only one heme group→ It binds one rather four O₂ molecules.
- The myoglobin dissociation curve is rectangular hyperbola rather than the sigmoid curve observed for hemoglobin
- It has higher affinity for O₂ (P50 is low) → favors picking up of O2 from hemoglobin in the blood.
- O2 is released only at low PO ₂ values (eg, during exercise).
- When muscle blood supply is compressed during contractions,
 →myoglobin can continue to provide O₂ under reduced blood flow or reduced PO₂ in the blood.

